, Ltd., Tokyo, Japan) were used as obtained. A volume of adsorbent was determined after standing for 24 h in a measuring cylinder with water. Infrared (IR) spectra were recorded using IR-810 (Jasco Co., Ltd., Tokyo, Japan). Total organic carbon content analysis and differential scanning calorimetry (DSC) were carried out using TOC-5000A (Shimadzu MFG., Kyoto, Japan) and DSC220C (Seiko Instruments Inc., Tokyo, Japan), respectively.
Scanning electron micrographs (SEM) and transmission electron micrographs (TEM) were taken at JEOL DATUM (Tokyo, Japan) using JSM-6400 F (JEOL) and JEM-1200EX (JEOL), respectively. DEAE-Sepharose CL-6B and Pyrosep (histidine-immobilized agarose, Sigma-Aldrich, Tokyo, Japan) were obtained from manufacturers. HSA (20% w/v) and LPS (Escherichia coli serotype O127:B8) were products of Nihon Pharmaceutical Co., Ltd. Small molecule library high throughput (Tokyo, Japan) and Difco Laboratories (Detroit, MI, USA), respectively, and used as obtained. Toxicolor (Seikagaku Corporation, Tokyo, Japan), which is a chromogenic Limulus amebocyte lysate test, was used as an assay LY2606368 mouse method for LPS.
Samples containing LPS were diluted with Tris–HCl buffer (pH 8.0) to lower than 0.085 ng mL-1 of LPS and assayed by the method recommended by the manufacturer. The detection limit of LPS in this test was as low as 0.020 ng mL-1, which corresponded to 0.06 endotoxin unit. HSA concentration was measured by UV at 236 nm to avoid interference of a stabilizer N-acetyltryptophan
showing adsorption at 280 nm. Preparation of porous CYT387 order supports bearing lipid membranes Preparation of porous supports bearing lipid membranes is described briefly with the conceptual scheme (Figure 2). Chitosan was simply N-alkylated by 1-bromooctadecane in N,N-dimethylacetamide to yield N-octadecylchitosan consisting 70 mol% of GlcNC18, 17 mol% of GlcN, and 13 mol% of GlcNAc. In DSC of N-octadecylchitosan, an endothermic peak was observed (T c = 46°C) indicating Branched chain aminotransferase a gel to liquid-crystalline phase transition. Dispersion liquid was prepared by suspending N-octadecylchitosan in water including hydrochloric acid and successive sonication. Electron microscopic observation of the dispersion liquid revealed the existence of unilamellar vesicles having diameters of 10 to 150 nm [12]. Carboxylated porous supports were prepared by N-succinylation of the cross-linked porous chitosan with succinic anhydride. Vesicular dispersion of N-octadecylchitosan was reacted with the carboxylated porous supports in the presence of WSC and HOSu to form amide bonds from primary amino groups of N-octadecylchitosan and carboxyl groups of the porous supports. The resulting materials were further reacted with N-acetylglucosamine to block the remaining carboxyl groups by amidation [10]. Figure 2 Preparation schemes of the porous supports bearing lipid membranes.